

Technical Resilience Navigator (TRN) Overview Training

September 9, 2020

Accredited Training

Agenda

- 1. Agenda and Workshop Objectives
- 2. FEMP Introduction
- 3. Technical Resilience Navigator (TRN) Overview
- 4. TRN Web Tool Overview
- 5. TRN Modules Overview & Interactive Activities
- 6. Q&A
- 7. Conclusion

To Receive IACET-Certified CEUs for a Workshop

To Receive IACET-Certified CEUs, Attendees Must:

- Attend the training in full. No exceptions
- Complete an assessment demonstrating knowledge of course learning objectives within six weeks of the training. A minimum of 80% correct answers is required.
- Complete an evaluation of the training event within six weeks of the training

To Access the On-Demand Workshop Assessment and Evaluation, Visit:

- https://www.wbdg.org/continuing-education/femp-courses/fempodw057
- If you do not have a WBDG account created, you will be required to create one.

Interactive Activities in Today's Training

- Today's training has interactive activities for participants to better understand some of the concepts contained within the slide presentations
- In another web browser window or with your smart phone, go to <u>www.menti.com</u>
- If you have questions, please enter them into the WebEx Chat

Interactive Activities for Live Training Only

FEMP Introduction & TRN Overview

Resilience is a Top Priority for FEMP

What is Resilience?

The ability to anticipate, prepare for, and adapt to changing conditions and to withstand, respond to, and recover rapidly from disruptions.

Resourcefulness

The ability to prepare for and manage a disruption, including identifying solutions, training, effective communication, and prioritizing actions to control and mitigate damage

Redundancy

Back-up resources and islandable onsite generation systems to support primary systems in case of failure

Resilience Attributes

Robustness

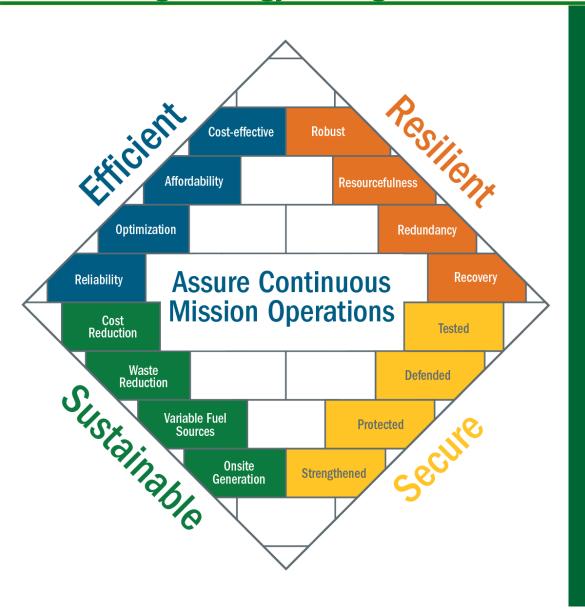
The ability to maintain critical operations during a disruptive event. Including building and infrastructure design and system substitution capability

Recovery

The ability to return to normal operating conditions as quickly and efficiently as possible after a disruption

Beyond Disaster Preparedness

Resilience planning is <u>distinct</u> from disaster preparedness


 It emphasizes proactive strategies and actions that can be implemented to mitigate the impacts of unplanned disruptions

\$1 spent on resilience is worth \$4 spent on recovery

NIBS, The Natural Hazard Mitigation Saves: 2017 Interim Report

Resilient, Efficient, and Secure Approaches to Strategic Energy Management

Integration Drives FEMP's Resilient-Efficient-Secure Nexus

- Solutions that incorporate energy efficiency, resiliency, security, and sustainability, are essential for agency mission assurance.
- FEMP provides agencies the tools and resources needed to identify, develop and execute integrated solution sets.
 - 50001 Ready Navigator
 - REopt Lite
 - Facility Cybersecurity Toolset
 - Distributed Energy Resources
 Cybersecurity Framework
 - Procurement
 - Alternative Water

Achieving Resilience Through Proactive Planning

A site that is energy and water resilient has:

- Optimized systems and operations
- ★ Identified risk and consequences
- ★ Trained personnel and capabilities
- ★ Actionable strategies to achieve diverse solutions

DOE Federal Energy Management Program's Technical Resilience Navigator

Key Outcomes

- Identify site hazards and vulnerabilities in energy & water systems, operations and plans
- Establish relative risk from different sources and how solutions reduce risk
- Better integrate planning for energy and water management, continuity of operations, other site priorities

Outcomes from TRN Modules

Site-Level Planning

Baseline Development

Risk Assessment

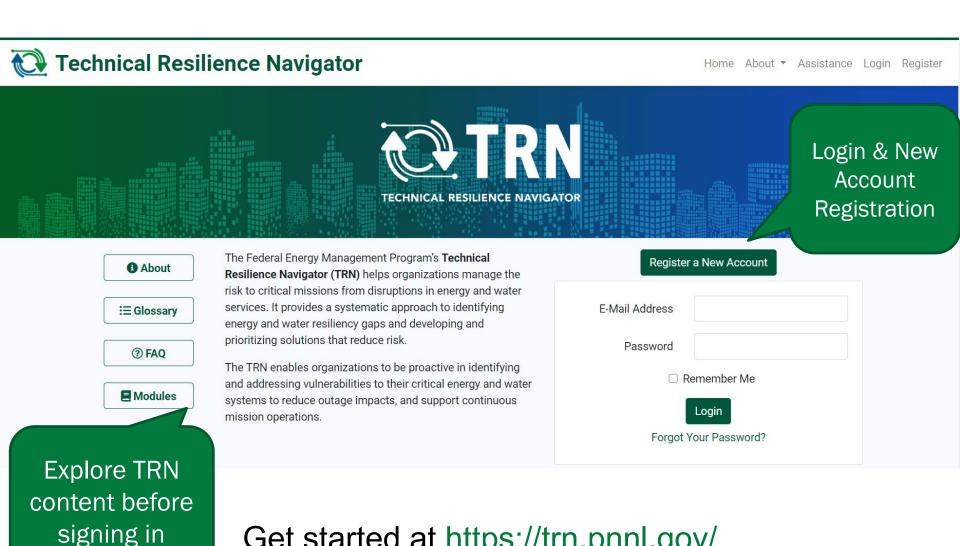
Solution Development

Solution Prioritization

Roadmap to Action

- Resilience planning team
- Site Resilience Priorities
- List of critical functions
- Resilience gap identification

- Critical energy and water loads
- Baseline condition of energy and water systems
- Outage time tolerance for critical loads


- Identified hazards
- Risk scenarios
- Expanded list of resilience gaps
- Risk screening summary

- Resilience gap analysis
- List of solutions to identified gaps
- Post-solution risk reduction
- Key non-risk criteria for solution evaluation
- Priority solution list

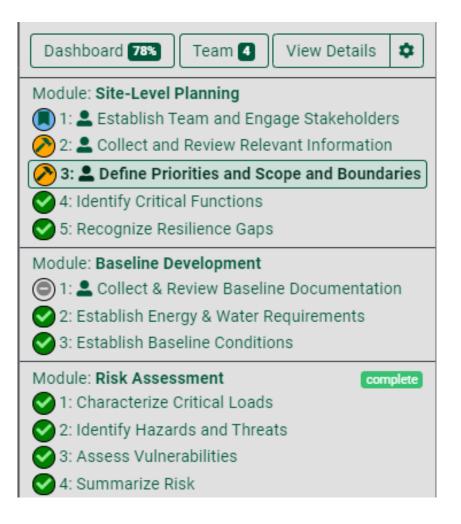
- Action Plan for solution implementation
- Business justification

Web Tool Overview

TRN Web Application

Get started at https://trn.pnnl.gov/

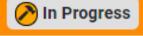
TRN Web Application: Tips & Tricks



- ✓ Use supported internet browsers for best performance (not IE)
- ✓ Don't forget to validate your email address
- ✓ All team members must create TRN accounts for assignment

- ✓ Choose the level of data sensitivity that's right for your site
- ✓ Don't enter sensitive data into TRN webforms or uploads
- ✓ Downloadable version coming soon

Get started at https://trn.pnnl.gov/


Getting Started: Key Steps

- Create a TRN Account
- Create (or join) a Resilience Framework
- Build and Manage Resilience Team
- Track Progress as Actions are completed

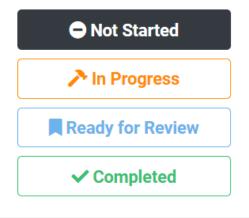
Getting Started: Completing an Action

Action 2: Collect and Review Relevant Information

Assigned to:

Julia Rotondo 💠

Update Assignment


Action Assigned to You

★ TAKE ACTION:

Online Action Worksheet

- Update Action Status. Offline data entry and track progress through the form
- Upload Worksheet File. Offline data entry with ability to upload completed files (visible to entire resilience team)
- Online Action Worksheet. Online using integrated web forms

Select Updated Action Status:

Getting Started: Key Steps

- ✓ Track progress via the Dashboard
 - Updated automatically as actions are completed

Site-Level Planning

Module 1: Site-Level Planning

Build a foundation for your resilience assessment

Who are your key stakeholders?
What existing information can you start with?
What are your resilience priorities?
What critical functions do you need to maintain?

TRN: Site-Level Planning Actions

Action 1: Establish Resilience Team and Engage Stakeholders

Action 2: Collect and Review Relevant Information

Action 3: Define Site-Level Resilience Priorities and Scope and Boundaries

Action 4: Identify Critical Functions

Action 5: Recognize Resilience Gaps

SLP Action 1: Establish Resilience Team and Engage Stakeholders

Establish Resilience Team

- Lead
- Core Team

Duties of Core Team:

- Identifying and engaging stakeholders
- Defining the scope and boundaries of the TRN effort
- Identifying relevant information and collecting and reviewing data
- Implementing TRN activities and exercises
- Seeking input and subject matter expertise where needed
- Tracking and reporting on TRN progress.

"The resilience planning team takes ownership of the TRN process, works with all levels of staff to integrate additional expertise, as needed, and reports on progress regularly."

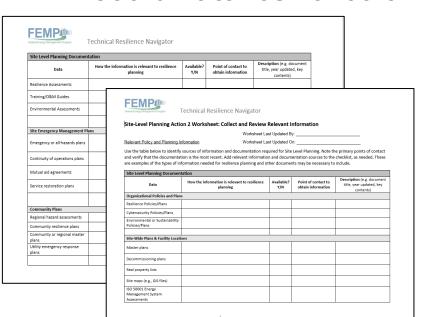
(from TRN-SLP Action 1)

SLP Action 1: Establish Resilience Team and Engage Stakeholders

Example stakeholders:

- Critical mission or function owners
- Facility operators
- Energy and water managers
- Community engagement experts
- Continuity of operations planning (COOP) officers or emergency responders
- Tenant organizations
- External owners and operators if energy and water utility systems that may impact a site's ability to operate during disruptions

SLP Action 2:


Collect and Review Relevant Information

Identify and document existing policies and plans that could impact or intersect with resilience planning efforts

Better understand the site planning context

- Ensure the effort builds upon existing plans
- Identify planning areas that may need to be more robust
- Coordinate resilience efforts with other related initiatives

- Organizational Policies/Plans
- Site Master Plans
- Emergency Management Plans
- Community Plans
- Critical Missions and Functions Documentation

SLP Action 3: Define Site-Level Resilience Priorities and Scope and Boundaries

Resilience Priorities

- Describe an optimal, desired future state
- Provide context for the TRN process
- Establish a shared vision
- Facilitate coordination toward a common objective or set of targets
- Providing a reference point for future decision-making

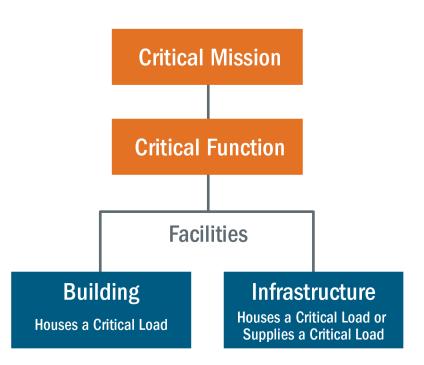
Example Resilience Priorities

- → Incorporation of community resilience partnerships into standard preparedness plans
- → Ensure the most critical infrastructure is secure and able to recover rapidly from disruptions
 - → Maintain power to critical loads and functions for at least 14 days
- → Increase the amount of onsite renewable energy generation that can support the site during a disruption
 - → Incorporation of resilience into daily operational decision-making.

SLP Action 3:

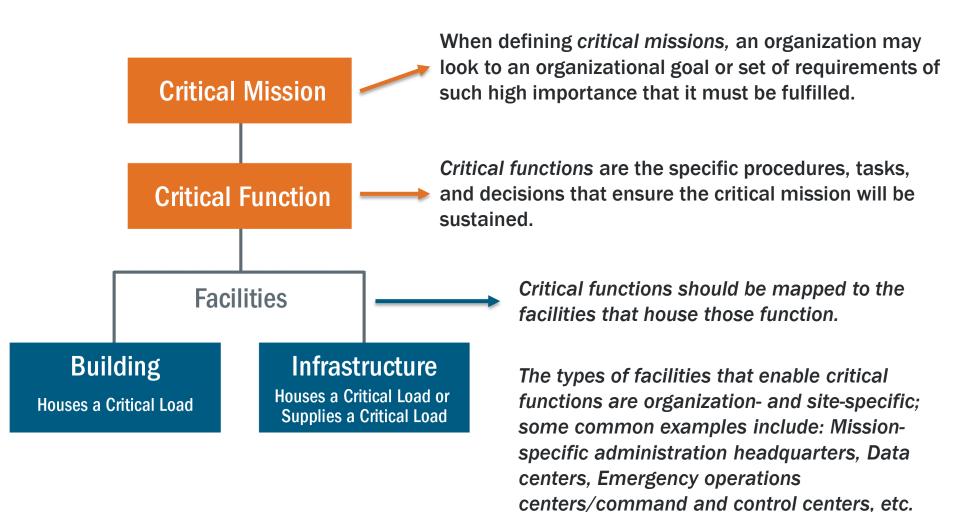
Define Site-Level Resilience Priorities and Scope and Boundaries

Scope and Boundaries


The scope should be defined in terms of:

- 1) Site geographical or operational boundaries and facilities
- 2) Resources assessed (i.e., electric, gas, and/or water)
- 3) Integration points with site priorities (e.g., energy efficiency, cybersecurity, sustainability, water conservation).

SLP Action 4: Identify Critical Functions


Goal is to identify the site's critical functions, and to establish their relative criticality, or importance.

Criticality	Critical Functions	Weighting Factor
Tier 1	Emergency operationsSecurity operations	50
Tier 2	Data processingIntelligence analysis	10
Tier 3	TrainingResearch experiment continuity	1

SLP Action 4: Identify Critical Functions

Where to start: Defining Critical Missions and Functions

SLP Action 4: Identify Critical Functions

Criticality weighting factors

- Not all critical functions may be of equal importance.
- Loss of any one function may have varying degrees of impact on the critical missions.

Resilience planning team action: decide whether all critical functions are of equal importance or to establish <u>tiers</u> of importance.

 These tiers allow the loss of certain functions to be weighted or prioritized above the others when assessing risk.

Criticality	Critical Functions	Weighting Factor
Tier 1	Emergency operationsSecurity operations	50
Tier 2	Data processingIntelligence analysis	10
Tier 3	TrainingResearch experiment continuity	1

SLP Action 5: Recognize Resilience Gaps

A list of identified resilience gaps will help gain a more comprehensive understanding of the resilience needs of the site.

Resilience gaps are documented throughout the TRN process and used to inform the Solution Development, and solution prioritization modules.

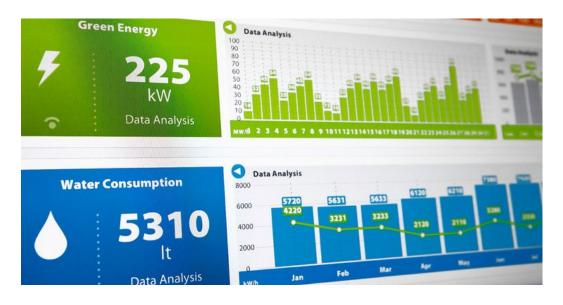
	Type of Gap		Resilience Attributes Impacted					
Gap Description	Technological	Operational	Institutional	Redundant	Robust	Resourceful	Recovery	Critical Functions or Loads Impacted by Gap
		·						

SLP Action 5: Recognize Resilience Gaps

Q Gap Types

- Technological: Gaps in physical systems including their availability, design, and performance (e.g., vulnerabilities in the systems that inhibit reliable power to a critical load).
- Operational: Gaps in existing processes or procedures that ensure energy or water availability (e.g., automatic start-up systems for backup generation or training programs for manual start-up systems)
- Institutional: Gaps in organizational or site plans, policies, and other data which have the potential to broadly enhance site resilience.

Interactive Activity



Interactive Activities for Live Training Only

Baseline Development

Module 2: Baseline Development

Understand your current ability to meet critical energy and water requirements

What systems require energy or water to enable critical functions?

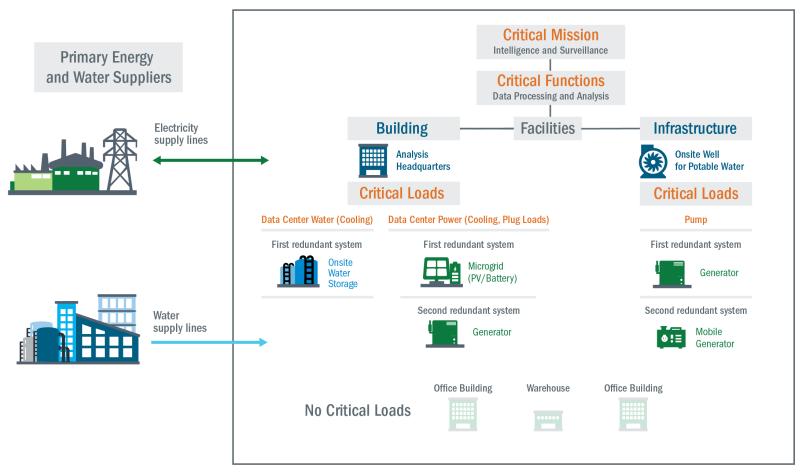
Do those systems have redundant energy and water sources?

What is the condition of those redundant systems?

Is the site prepared to respond to potential disruptions?

Baseline Development Actions

Action 1: Collect and Review Baseline Documentation



Action 2: Establish Energy and Water Requirements

Action 3: Establish Baseline Conditions of Energy and Water Systems

Establish Energy and Water Requirements

Site Boundary

Baseline Development

TRN Resource: Interview Protocols

Example questions

- What <u>critical loads</u> require energy to fulfill the critical function (e.g., ventilation, servers)?
- Is the <u>demand</u> for energy or water variable or consistent throughout the year?
- What is the <u>tolerable outage duration</u> for the critical load, before mission failure or degradation would occur?
- What <u>redundant energy systems</u>, such as a backup generator, UPS, or other onsite power supply currently serve the critical load during a utility disruption?

Baseline Conditions

- Availability: defines the state of any redundant systems for each critical load identified
- Design: defines the design intent of systems, defines operating parameters and environmental conditions under which the system is designed to meet its operational intent
- Reliability: defines the operation, maintenance, and testing of the system and other reliability management measures
- Configuration: defines the state of the operating processes, procedures and plans in place for the redundant system

Interactive Activity

Interactive Activities for Live Training Only

Risk Assessment

Module 3: Risk Assessment

Screening risk assessment identifies relative risks systematically

What are the drivers of risk at my site – and where do I most need resilience solutions?

How can I understand how resilience solutions compare?

Photo Credit: WaterOnline.com

Risk Assessment Actions

Action 1: Characterize Critical Loads for Risk Assessment

Action 2: Identify Hazards and Threats

Action 3: Assess Vulnerabilities

Action 4: Summarize Risk

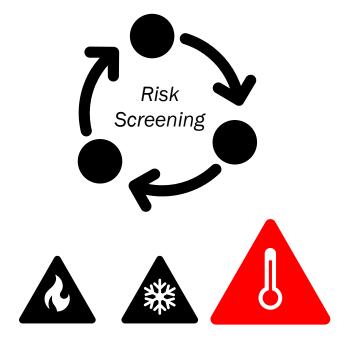
Risk Assessment Expectations

As screening tool, expectation is inputs are approximate

- Rough estimate input data to understand relative risk
- Not intended to generate precise risk estimates

Expectation of user iteration

- Use informed judgement to enter "good enough" inputs for preliminary pass
- Revisit as more data available and use comment fields judiciously


Ensure Transparent & Systematic Comparison

Identify hazards

Understand which hazards drive risk to critical loads – and merit solutions

- TRN highlights relative risk across:
 - Critical loads
 - Hazards
 - Types of vulnerabilities
- Documented assumptions on risk inputs; conduct sensitivity analysis
- Directly <u>compare</u> how well different solutions address risk (and other sitespecific criteria)
 - Quantitative, repeatable methodology enhances justification for solutions

Risk-informed resilience planning

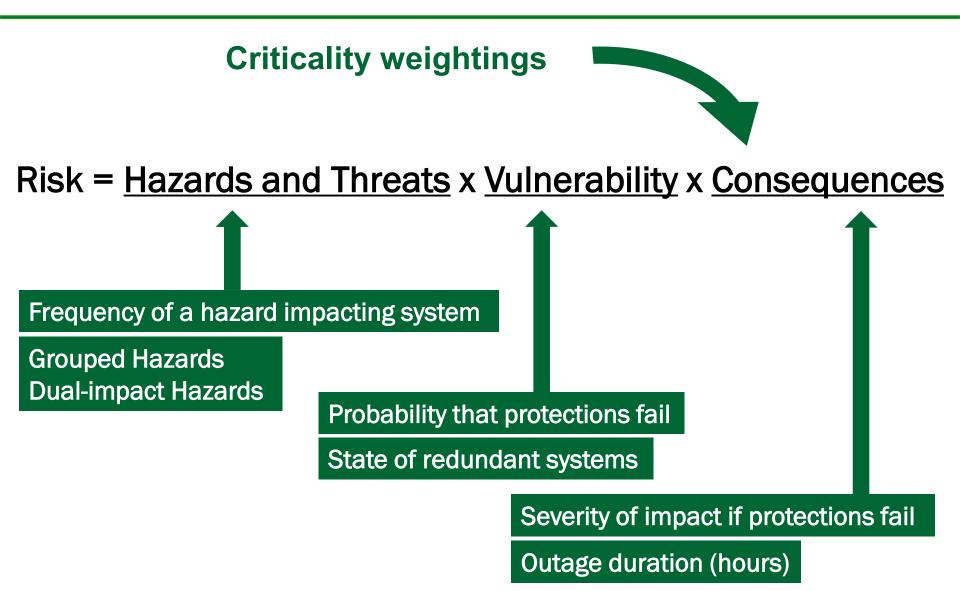
Hazards and threats

that impact energy and water at the site Vulnerability

of redundant systems if the hazard occurs

Consequence

outage duration (hours) over the tolerable limit


TRN Risk
Assessment

Sources of greatest risk

Conduct Risk Assessment

Risk = <u>Hazards and Threats</u> x <u>Vulnerability</u> x <u>Consequences</u> Frequency of a hazard impacting system **Grouped Hazards Dual-impact Hazards** Probability that protections fail State of redundant systems Severity of impact if protections fail Outage duration (hours)

Determine weighted risk

Key Inputs and Outputs for TRN Risk Screening

Input Output **Critical Load** Hazard Risk Score **Vulnerability** Information Information Distribution Unweighted risk (annual Site-specific information Relative importance outage hours) about primary system (determined by loss (duration & Redundant system critical function) Weighted risk (reflects frequency) information (capability relative importance) for duration, system Mission restoration Hazards that could condition, staff training, Risk distribution across capability result in loss of primary actuation, etc.) loads and hazards, service and on-site Tolerable outage of vulnerability, and redundant systems each load mission restoration (duration & frequency) capability

Interactive Activity

Interactive Activities for Live Training Only

Want to Find Out More?

TRN Risk Assessment Training

- ✓ Technical Resilience Navigator Risk Assessment Overview https://www.wbdg.org/continuing- education/femp-courses/fempodw058
- ✓ Developing And Prioritizing Resilience Solutions Within The Technical Resilience Navigator https://www.wbdg.org/continuing-education/femp-courses/fempodw059

Solution Development

Module 4: Solution Development

Brainstorm solutions to address identified gaps and increase resilience

What resilience gaps do I need to fix?
What resilience solutions would be applicable to my site?

Solution Development Actions

Action 1: Analyze Resilience Gaps

Action 2: Identify Resilience Solutions

Analyze Resilience Gaps

- Notice areas where no gaps have been identified and think about whether there are gaps that have been missed
- Understand the root cause of the gaps to develop solutions targeted at the source of the gaps
- Identify opportunities for solutions that solve multiple gaps at once

Step 1 and 2: Consolidate and Characterize Resilience Gaps									
	Type of Gap			Resilience Attributes Impacted					
Gap Description		Operational	Institutional	Redundant	Robust	Resourceful	Recovery	Critical Functions or Loads Impacted by Gap	
Data processing does not have enough energy and water to sustain missions for 1 week.	X	X		X				Data processing	
Total Number of gaps in type or attribute:									

Identify Resilience Solutions

Resource Impacted	Solution Description	Solution Type	Resilience Attributes Incorporated	
Energy	Microgrid serving critical loads with onsite storage and islanding controls.	Technological	Redundancy Robustness	
Energy and Water	Recovery plans in place and exercised.	Operational	Resourcefulness Recovery	
Energy	Develop strategic investment plan for critical infrastructure and end- of-life replacement with more resilient infrastructure.	Operational Institutional Technological	Resourcefulness Recovery	
Energy and Water	Increase site security, remote monitoring, and/or develop robust fence and gate infrastructure for physical security.	Operational Institutional	Resourcefulness Robustness	
Energy and Water	Develop pre-event checklist for site preparation.	Operational	Resourcefulness Robustness	
Energy	Develop distributed resources for spatial diversity and grid flexibility, implement redundant transmission and distribution lines, and/or diversify energy supply.	Operational Technological	Redundancy Resourcefulness Robustness Recovery	
Energy and Water	Utility agreements to allow for islanding and quick recovery on-site.	Operational	Resourcefulness Recovery	

Interactive Activity

Interactive Activities for Live Training Only

Solution Prioritization

Module 5: Solution Prioritization

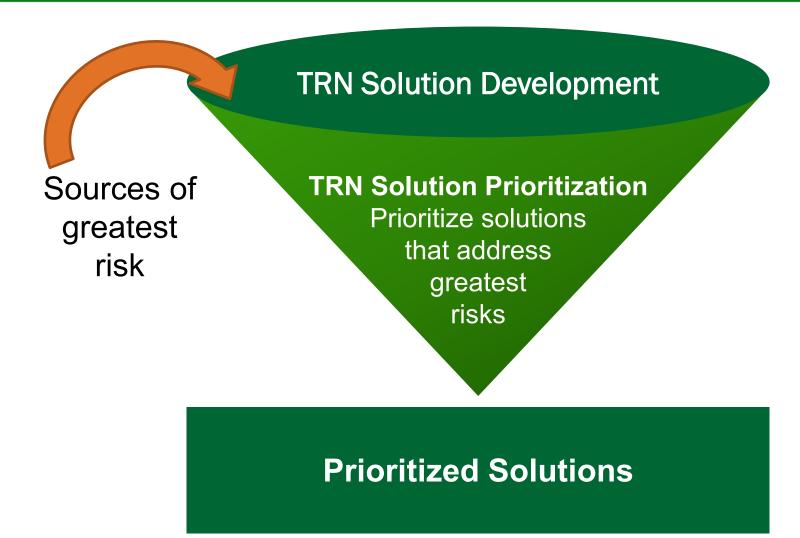
Evaluate which solutions best meet your needs

Which solutions decrease my risk the most? What priorities should guide my decision making?

Solution Prioritization Actions

Action 1: Screen Solutions

Action 2: Model Solution Risk Reduction Potential



Action 3: Review Priorities and Costs

Action 4: Prioritize Solutions

Risk-informed solution development and prioritization

Generate a Prioritized List of Resilience Solutions

Prioritize solutions based on:

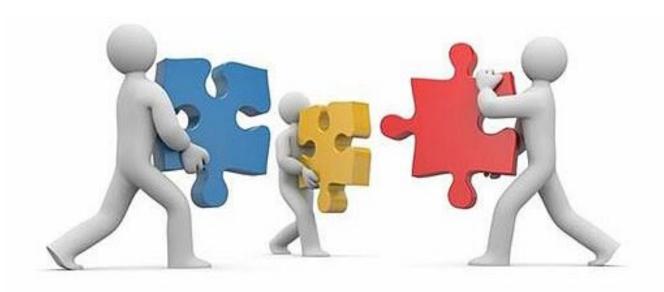
- 1. Risk-reduction potential
- 2. Site prioritization criteria
- 3. Cost of implementation and ongoing costs

Consider cost and other criteria when prioritizing resilience solutions

- Prioritization criteria can include any decision-making factors important to the site, such as
 - Addressing efficiency goals
 - Addressing sustainability goals
 - Addressing leadership priorities
- These criteria are combined with risk-reduction potential to generate the resilience solution benefit potential
- Finally, a high-level cost estimate for each resilience solution can be included to help generate a prioritized list of resilience solutions

Priority Order	Solution	Potential Benefit	Cost Category	Priority	10-Year Total Cost
1	Improve mission duplication capability for data storage and processing. Reduce time to initiate, document and train on process.	Moderate	Low	7	\$200,000
2	Conductivity controller (water efficiency measure, to extend water redundant system capability).	Low	Low	8	\$110,000
3	Solution set: friction damper + conductivity controller + enhancement of mission duplication capability.	Moderate	High	15	\$1,610,000
4	Friction damper: upgrade water redundant system with aseismic design.	Low	High	16	\$1,300,000

Interactive Activity



Interactive Activities for Live Training Only

Roadmap to Action

Module 6: Roadmap to Action Coming Soon!

Implement your solutions!

How do I pitch my resilience solution?
What financing mechanisms can I use?
How do I get started?

Interactive Activity

Interactive Activities for Live Training Only

Questions?

Interactive Activities for Live Training Only

Technical Resilience Navigator

TRN Benefits

- **✓** Establishes resilience priorities
- ✓ Identifies critical energy/water loads
- ✓ Delivers processes for riskinformed decision making
 - ✓ Prioritized list of resilience solutions
- ✓ Provides resources for continual engagement with leadership and stakeholders

Flexible Approach

- ✓ Allows agency/site priorities to shape assessments and solutions
- ✓ Speaks to all levels of resilience planning expertise
- ✓ Allows users to "drop in" and use modules they find useful
- √ Web-based application

Want to Find Out More?

TRN Risk Assessment Training

- ✓ Technical Resilience Navigator Risk Assessment Overview https://www.wbdg.org/continuing- education/femp-courses/fempodw058
- ✓ Developing And Prioritizing Resilience Solutions Within The Technical Resilience Navigator https://www.wbdg.org/continuing-education/femp-courses/fempodw059

Thank you!

Create an account TODAY at trn.pnnl.gov

Website: https://femp.energy.gov