

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

## **Decarbonization Considerations: Resilience Planning**

September 7, 2022



#### **Notice**

This webinar, including all audio and images of participants and presentation materials, may be recorded, saved, edited, distributed, used internally, posted on DOE's website, or otherwise made publicly available. If you continue to access this webinar and provide such audio or image content, you consent to such use by or on behalf of DOE and the Government for Government purposes and acknowledge that you will not inspect or approve, or be compensated for, such use.

## **Webinar Logistics**

- Call in for the best audio connection!
- Please ensure your phone/computer is muted throughout the webinar
- Logistical issues: <u>wbdg@nibs.org</u>
- Don't hesitate to ask questions!
  - Send questions to all panelists in the Q&A window
  - Feel free to contact us through the <u>FEMP</u>
     <u>Assistance Request Portal</u>
     (https://www7.eere.energy.gov/femp/assist ance/node/add/application-combined</u>)



#### **Today's Speakers**







Ethan Epstein Resilience Planning Lead U.S. Department of Energy Ethan.Epstein@ee.doe.gov Julia Rotondo Project Manager Pacific Northwest National Laboratory Julia.Rotondo@pnnl.gov Doug Elliott Economist Pacific Northwest National Laboratory Doug.Elliott@pnnl.gov

#### Hannah Rabinowitz Earth Scientist Pacific Northwest National Laboratory Hannah.Rabinowitz@pnnl .gov

#### **Goal and Purpose of Today's Training**

- FEMP is helping agencies understand how to maximize decarbonization while harnessing climate adaptation techniques and maintaining site resilience, allowing agencies to meet current and future decarbonization goals. This training will provide attendees with an understanding of which tools and resources are available to help plan for climate resilience and adaptation.
- Upon completion of this course, attendees will be able to:
  - Identify climate adaptation and vulnerability needs
  - Understand the intersection between resilience and decarbonization
  - Leverage available FEMP and other resources to incorporate resilience planning into decarbonization
- To earn CEUs, take the quiz at the same link you registered

### Agenda

- FEMP Resilience Program Overview
- Technical Resilience Navigator (TRN) Overview
- New TRN action: Analyze Emissions Impact
- Web Demo
- Q&A

### Federal Energy Management Program (FEMP)

FEMP works with its stakeholders to enable federal agencies to meet energy-related goals, identify affordable solutions, facilitate public-private partnerships, and provide energy leadership to the country by identifying government best practices.

FEMP was codified by the Energy Act 2020 to facilitate the implementation by the Federal Government of cost-effective energy and water management and energy-related investment practices:

- A. to coordinate and strengthen Federal energy and water resilience; and
- B. to promote environmental stewardship.



#### **Resilience is a Top Priority for FEMP**



Energy and water resilience is a key component of federal facility infrastructure operations

<u>*Resilience*</u> is accomplished when operational and procedural elements can withstand, adapt to, respond to, and recover from disruption

#### What is Resilience?



#### RESOURCEFULNESS

Preparedness with optimized performance of energy and water systems and adequate planning, personnel training, and testing to manage through a disruption

> ENERGY & WATER RESILIENCE



#### REDUNDANCY

Availability of back-up resources and islandable onsite generation systems that enable continuity to critical loads during primary system disruptions



#### RECOVERY

Ability to return to normal operating conditions as quickly and efficiently as possible after a disruption

#### ROBUSTNESS

Ability to maintain critical operations during a disruptive event through building, infrastructure, and redundant system design, as well as system substitution capability

## **Achieving Resilience Through Proactive Planning**

A site that is energy and water resilient has:

★ Optimized systems and operations

Identified risk, consequences, and cost

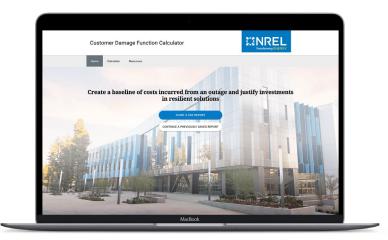
**Trained personnel and capabilities** 

Actionable strategies to achieve diverse solutions



Agencies seek to ensure their facilities and operations adapt to and are increasingly resilient to climate change impacts. Actions include climate vulnerability assessments, integrating climate-readiness across missions, and managing and mitigating climate risks.




#### **Resilience Planning**

 Agency agnostic tools and resources to guide stakeholders through the process of assessing and implementing projects that enhance site resilience



#### **Resilience Valuation**

 Tools and frameworks to help stakeholders better quantify the benefits from resilience projects or measures



### **FEMP's Technical Resilience Navigator**



**TECHNICAL RESILIENCE NAVIGATOR** 

## Visit: <u>https://trn.pnnl.gov/</u>

The TRN helps users assess risk to a site's critical functions from energy and water utility disruptions and prioritize solutions that reduce risk





**TECHNICAL RESILIENCE NAVIGATOR** 



Focuses on Energy and Water Resilience

Ē

Replicable and **Robust Planning** Process



Online Webtool with Downloadable **Option for Data** Security

## **TRN Overview**



### **Risk-Informed Resilience Planning**

# What can go wrong?

(A scenario)

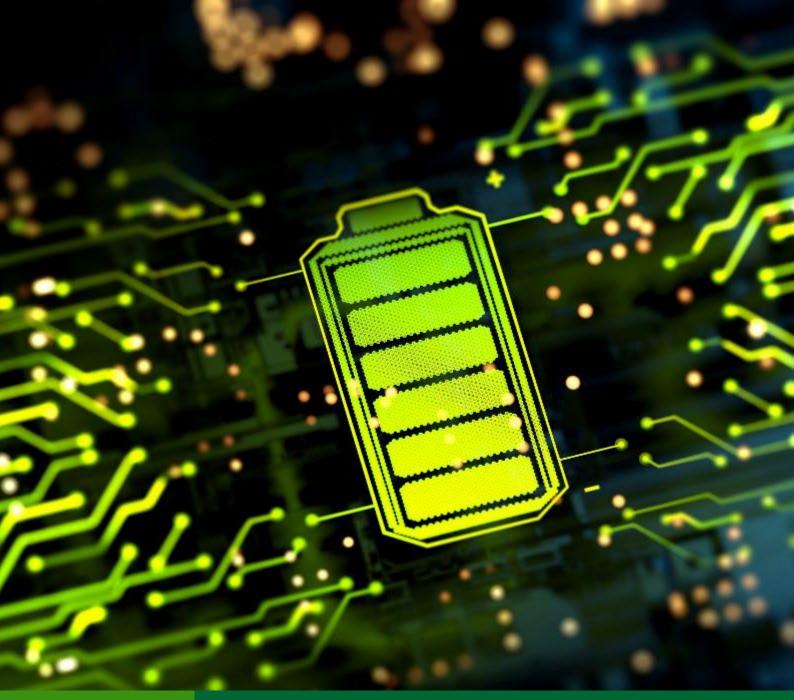
# How likely is it?

(A probability or frequency)

# How bad would it be?

(A consequence severity)

The TRN follows best practices in risk assessment.


By identifying drivers of risk, users can focus on creating solutions in areas likely to have the biggest impact.

## **Calculating Risk in the TRN**

### **Key Inputs**

- Hazard
- Vulnerability
- Consequence
- Criticality Weighting
   Factor

|           | Hazard                                                                    | X | Vulnerability                                                                                             | X | Consequence                                                                                                                               | X | Criticality                                                                                              |
|-----------|---------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------|
| Frequency | <b>d Frequency</b><br>y of detrimental event<br>ead to an energy or water |   | <b>Probability of</b><br><b>Failure</b><br>Probability that preventive<br>measures at the site will fail. |   | Outage Duration<br>Amount of time that the site will<br>be unable to perform a critical<br>function if energy or water supply<br>is lost. |   | Criticality<br>Weighting Factor<br>Importance of the impacted critica<br>function to the site's mission. |
|           | lentify Potential Hazards<br>timate dual-impact                           |   | <b>Calculated:</b><br>Based on answers to redundant<br>system characterization questions.                 |   | <b>User input:</b><br>Outage duration, tolerable outage<br>duration, function restoration.                                                |   | <b>User input:</b><br>Criticality tier for each critical<br>function.                                    |

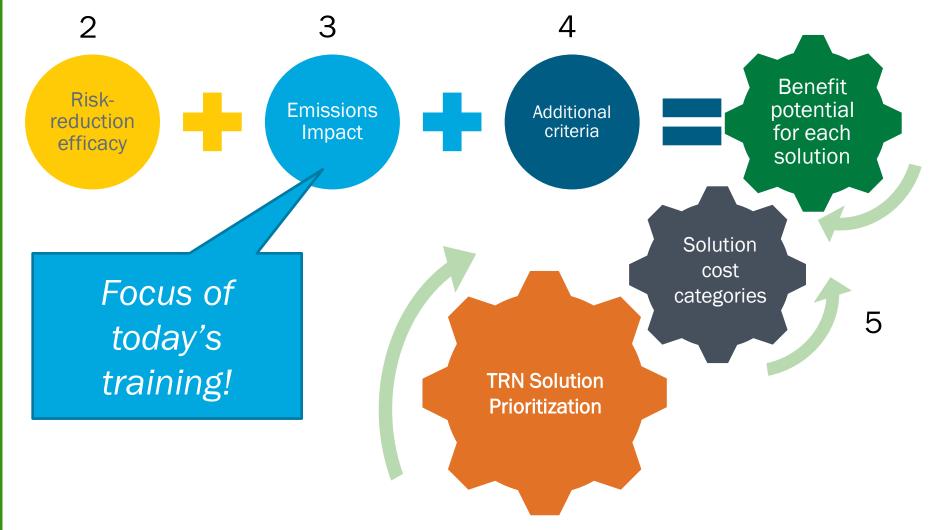


Resilience solutions address key gaps and risk drivers identified from analysis.

TRN users then model each solution to see its potential benefit on the site in terms of risk reduction, emissions impact, and other userdefined decision criteria

### **Prioritizing Resilience Solutions**

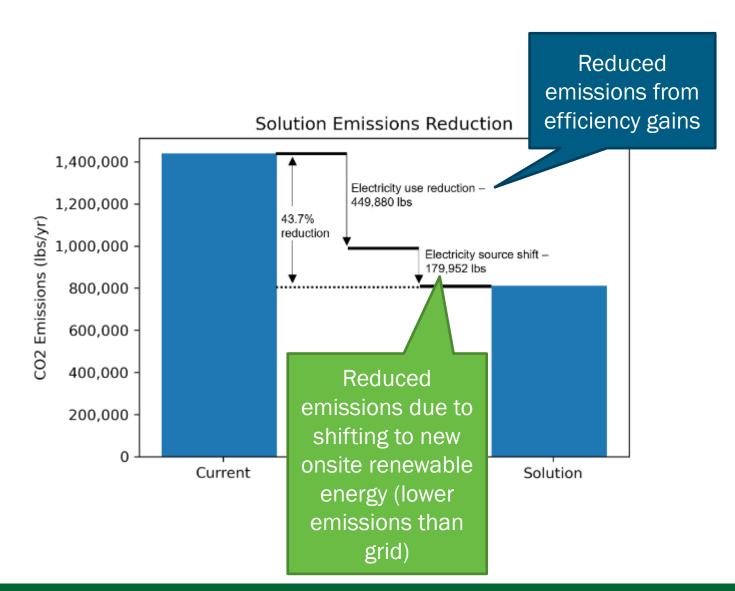
|                                                                                                                                                                                                                  | How well does solution meet criteria?                     |                                                       |                                                                    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|--|
| Solution                                                                                                                                                                                                         | Criterion 1:<br>Risk-reduction<br>efficacy<br>Weight: 80% | Criterion 2:<br>Emissions<br>reduction<br>Weight: 10% | Criterion 3:<br>Meets site training<br>requirements<br>Weight: 10% |  |
| Reduce required time to move operations to offsite data center, and train on that process.                                                                                                                       | Significant<br>(64%)                                      | None (0%)                                             | Well                                                               |  |
| Implement ability to move training offsite.                                                                                                                                                                      | Minor (3%)                                                | None (0%)                                             | Well                                                               |  |
| Full set of electrical and water redundant system improvements (water efficiency, hazard design, robust water PM, automate water start-up, MOU) + improvement of process to move data center operations offsite. | Major (98%)                                               | None (0%)                                             | Very well                                                          |  |
| Full set of electrical and water redundant system improvements (water efficiency, hazard design, robust water PM, automate water start-up, MOU)                                                                  | Major (92%)                                               | None (0%)                                             | Well                                                               |  |
| Add PV microgrid with batteries, capable of supporting elec. critical loads for 1 week, and 20% of site elec. loads during normal operations.                                                                    | Significant<br>(52%)                                      | Significant<br>(36%)                                  | Not well                                                           |  |
| Improve electrical efficiency, reducing critical load electrical use by 30%, extending diesel generator capability to 7 days, and cutting site elec. use by 15%.                                                 | Minor (20%)                                               | Significant<br>(18%)                                  | Not well                                                           |  |
|                                                                                                                                                                                                                  |                                                           |                                                       | <u>ل</u>                                                           |  |
|                                                                                                                                                                                                                  |                                                           |                                                       | γ                                                                  |  |
| Require                                                                                                                                                                                                          | ed & Mod                                                  | eled/                                                 | User-Define                                                        |  |
| Qu                                                                                                                                                                                                               | Quantitative                                              |                                                       | Qualitativ                                                         |  |


All projects have tradeoffs; the TRN helps users compare resilience solutions to consider how well a solution can reduce risk, support emissions reduction, and meet additional userdefined criteria while also considering cost

## **Prioritizing Resilience Solutions**

 Screen Solutions
 Model Solution
 Risk Reduction
 Potential

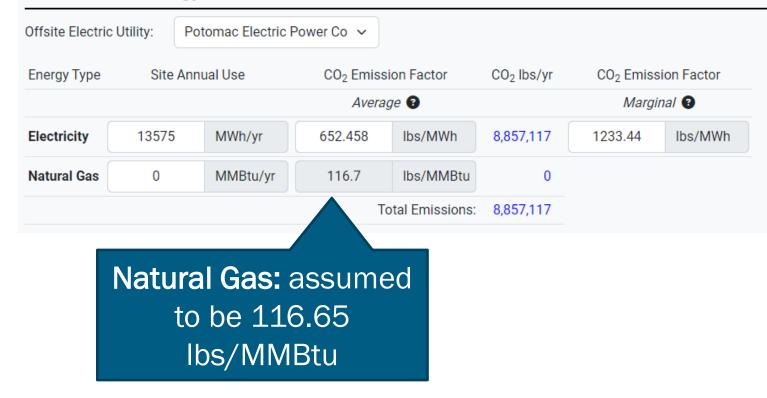
- 3. Model Emissions Impact
- 4. Review Priorities and Cost


5. Prioritize Solutions



#### **In Focus: Modeling Potential Emissions Impact**

Evaluates potential emissions impact from: 1) Changes in energy use 2) Shift in electricity supply


Solution emissions compared against current site emissions



#### **Data Requirements**

#### Electricity: average and marginal emissions factors pre-populated from EPA eGRID data (lbs/MWh)

#### Present Site Energy Use and Emissions



#### Solution Agnostic Inputs

 Emissions factors associated with the site's current energy usage

 Present annual site energy use (electricity and natural gas)

### **Data Requirements**

#### **Solution-Specific Inputs**

- How the solution changes the quantity of energy used (electricity and natural gas)
- How the solution shifts electricity consumption from the existing electricity supply to a lower emissions resource

| Characterize Solution                                                                                                                               |                      |             |         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|---------|--|
| Solution Description                                                                                                                                |                      |             |         |  |
| PV microgrid, batteries + electrical efficiency improvemer                                                                                          | nts.                 |             |         |  |
| Does this solution have the potential to change energy us of electricity at the site?                                                               | se or the source     | • Yes       | 🔿 No    |  |
| Energy Use Changes                                                                                                                                  |                      |             |         |  |
| How does this solution change the annual electricity use through increased efficiency, increases in load, etc.)?                                    | >5 - 15% reduction 🗸 |             |         |  |
| Electricity Supply Shift                                                                                                                            |                      |             |         |  |
| By how much does this solution shift the electrical suppl                                                                                           | ly to a new source   |             |         |  |
| (e.g., by switching to onsite generation, such as a solar microgrid)? Note that this response should be based on the site electricity use remaining |                      | >15 - 25% 🗸 |         |  |
| after any solution efficiency improvements are applied.                                                                                             |                      |             |         |  |
| What is the emissions factor for CO <sub>2</sub> (lbs/MWh) of the ne source(s)?                                                                     | ew electricity       | 0           | lbs/MWh |  |
| + View Technology-Specif                                                                                                                            | fic Emissions Facto  | ors         |         |  |

#### **TRN Resource: Emissions Factors**

|                                            | — Hide Technology-Specific Emissions Factors |                         |     |  |  |  |
|--------------------------------------------|----------------------------------------------|-------------------------|-----|--|--|--|
| Note: Median [25% quartile – 75% quartile] |                                              |                         |     |  |  |  |
|                                            | Туре                                         | C0 <sub>2</sub> lbs/MWh |     |  |  |  |
|                                            | Coal                                         | 2,297 [2,146-2,448]     | use |  |  |  |
|                                            | Diesel Generator                             | 1,538                   | use |  |  |  |
|                                            | Energy Storage                               | Varies                  |     |  |  |  |
|                                            | Fuel Cell                                    | 0                       | use |  |  |  |
|                                            | Geothermal                                   | 154 [0-154]             | use |  |  |  |
|                                            | Hydro                                        | 0                       | use |  |  |  |
|                                            | Hydrogen                                     | 0                       | use |  |  |  |
|                                            | Natural Gas                                  | 1,009 [814-1,321]       | use |  |  |  |
|                                            | Nuclear                                      | 0                       | use |  |  |  |
|                                            | Oil                                          | 1,815 [1,594-2,671]     | use |  |  |  |
|                                            | Purchased Steam                              | 0                       | use |  |  |  |
|                                            | Solar                                        | 0                       | use |  |  |  |
|                                            | Waste Heat                                   | 0                       | use |  |  |  |
|                                            | Wind                                         | 0                       | use |  |  |  |
|                                            |                                              |                         |     |  |  |  |

#### TRN Resource provides

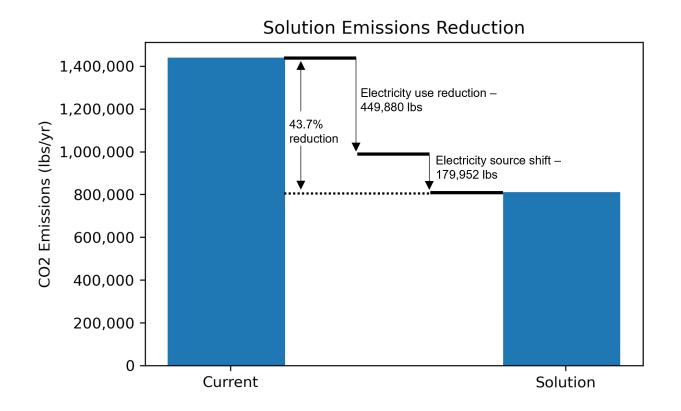
- Background on Average and Marginal Emissions Factors
- Table of technology-specific emissions factors based on eGRID Technical Guide, eGrid 2020 power plant data, and EPA data
- Important to note that these emissions factors ONLY reflect ongoing emissions from generation

#### **Example Analysis: Current Site Energy Use**

Analysis of Emissions Related to Current Site Energy Use

- Site uses 2,000 MWh/year of electricity but does not use any natural gas
- Emissions factors for the site's eGRID subregion are
  - Average electricity emissions factor = 719.9 lbs/MWh
  - Marginal electricity emissions factor = 1,124.7 lbs/MWh

|                         | Electricity      | Natural Gas      |
|-------------------------|------------------|------------------|
| Energy use              | 2,000 MWh/yr     | 0 MMBtu/yr       |
| $CO_2$ emissions factor | 719.9 lbs/MWh    | 116.65 lbs/MMBtu |
| Total current emissions | 1,439,800 lbs/yr | 0 lbs/yr         |


#### **Example Analysis: Solution Characterization**

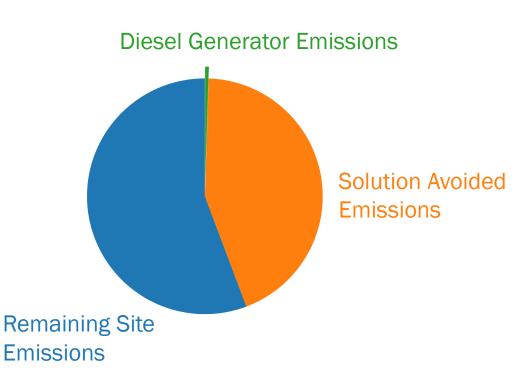
**Solution Characterization:** 

- Efficiency improvements resulting in a 20% reduction in electricity use
- Shifts 10% of remaining electricity use to a solar PV microgrid
- No change in natural gas usage

|                                    | Electricity use reduction | Shift in electricity source |
|------------------------------------|---------------------------|-----------------------------|
| Percent change                     | 20%                       | 10%                         |
| Avoided or shifted electricity use | 400 MWh/yr                | 160 MWh/yr                  |
| CO <sub>2</sub> emissions factor   | 1,124.7 lbs/MWh           | 0 lbs/MWh                   |
| Avoided CO <sub>2</sub> emissions  | 449,880 lbs/yr            | 179,952 lbs/yr              |

#### **Example Analysis: Results**




| Emissions reduction category    | Range         |  |
|---------------------------------|---------------|--|
| Major Emissions Reduction       | ≥ 50%         |  |
| Significant Emissions Reduction | 10% to < 50%  |  |
| Marginal Emissions Reduction    | > 0% to < 10% |  |
| No Emissions Reduction          | ≤0%           |  |

#### Elliott et al., 2022

#### **Solution Prioritization**

#### The math behind the scoring for Resilience Benefit Potential

| Solution                              | <b>Criterion 1:</b><br>Risk Reduction<br>Efficacy<br>(Weight 40%) | <b>Criterion 2:</b><br>Emissions<br>Reduction<br>(Weight 40%) | <b>Criterion 3:</b><br>Meets Site Training<br>Requirements<br>(Weight 20%) |       |                               |
|---------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|-------|-------------------------------|
| Add PV<br>Microgrid with<br>Batteries | Moderate<br>(27%)                                                 | Significant<br>(43.7%)                                        | Not<br>Well                                                                |       |                               |
| Score                                 | 2                                                                 | 3                                                             | 1                                                                          |       |                               |
| Weight                                | 0.4                                                               | 0.4                                                           | 0.2                                                                        |       | Donofit Dotontial             |
| Score x Weight                        | (2 x 0.4) =0.8                                                    | (3 x 0.4) =1.2                                                | (1 x 0.2) =0.2                                                             |       | Benefit Potential<br>Moderate |
| Calculation                           | 0.8                                                               | 1.2                                                           | 0.2                                                                        | = 2.2 | (2.2)                         |



- Emissions impact of redundant systems
  - Does not consider emissions reductions *during outage events* associated with switching to lower emission redundant systems
- Focuses on emissions reductions associated with electricity and natural gas use at a site
  - Does not consider indirect emissions reductions associated with water use
  - Does not consider other fuel sources

#### Web Demo

#### **Summary**

- The TRN allows users to consider emissions reduction benefits of energy and water resilience solutions developed through a risk-informed resilience planning process
- Emissions reduction benefits are determined as a percentage of current site emissions associated with electricity and natural gas use through two strategies:
  - Changing energy usage (e.g., energy efficiency improvements)
  - Shifting electricity from current source to a lower emissions source

#### **Any Questions?**

- View TRN action text
- Check out FAQs
- Create & verify account
- Take TRN Accredited Training
- Explore Identify Potential Hazards Tool

# Visit: <u>https://trn.pnnl.gov/</u>